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Abstract. Schwinger’s coupled-boson representation of spherical and hyperbolic angular 
momentum is related to spherical harmonics and is used for the calculation of matrix 
elements. It is shown that radial matrix elements of the two-dimensional isotropic oscillator 
and the closely related hydrogenic matrix elements are proportional to 3j-symbols. Matrix 
elements of exponentials of hyperbolic angular momentum operators which form a formal 
analogy to the well known rotation matrices d;,,,,(O) and which are written as tg i (0 )  are 
derived. As only elementary algebra and some operator formulae are used, the algebraic 
method supplements analytical and group theoretic methods. 

1. Introduction 

It is well known that the spherical harmonics are related to the three-dimensional 
orthogonal group 0, through operators shifting the index m of YY(0, rp). Operators 
which shift the index j were investigated by Infeld and Hull (1951) and by Louck (1960). 
A completely different approach was made by Schwinger (1952), who developed the full 
theory of angular momentum in the framework of creation and annihilation operators 
of the two-dimensional isotropic oscillator. In addition to the conventional angular 
momentum operators in a spherical basis j+, j - ,  j 3  changing the quantum number m 
he defined ‘hyperbolic’ angular momentum operators which change j .  These operators 
have received little attention in the literature. Quite recently Atkins and Dobson (1971) 
and Atkins and Seymour (1973) used them in two important papers on coherent angular 
momentum states and on off-diagonal operator equivalents in crystal field theory. 

The present paper aims at a relation between bilinear expressions of boson creation 
and annihilation operators, raising and lowering j and m of the spherical harmonics. It 
will be shown by elementary algebra that oscillator and hydrogenic radial matrix 
elements are proportional to 3j-symbols. In the theory of rotations the rotation matrices 
dL,,,,(0) are of fundamental importance. Because of the formal analogy to  ordinary 
angular momentum equivalent matrix elements in terms of hyperbolic angular momen- 
tum operators are derived and written as rgk(0). 

2. Boson calculus of angular momentum 

The full theory of angular momentum in the framework of boson calculus was given by 
Schwinger (1952), a very readable account of this work was given by Mattis (1965). 
Only some definitions and some additional state vectors and commutators will, therefore, 
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be given. Our notation differs from that of Atkins and Seymour (1973) for typographical 
reasons. Related to the boson representation is a recent comprehensive representation 
of group theory and the Coulomb problem by Englefield (1972), though he did not cite 
Schwinger’s work. 

The conventional ‘spherical’ angular momentum operators are defined as : 

I +  = a l a -  
3- = a t a +  
3, =;(at,a+ -a ta - )  = $A+ - A - )  

where a l  are the creation operators and 6, are the annihilation operators, ilia, = A, 
are the diagonal number operators for (+) and (-). The hyperbolic angular momentum 
operators are 

R +  = ayat  (4) 

R -  = a+a-  ( 5 )  

R ,  = &?++A- + 1) (6)  

with 

[R,,R,l- = * R *  
[R+,R-] -  = -2R, .  

By defining the components of R by 

(7) 

it is simple to ascertain that their commutation rules are those of a conventional angular 
momentum. As ten bilinear expressions of creation and annihilation operators can be 
formed, further operators changing both j and m simultaneously are introduced : 

M +  = ala! 
19, = a t a t  

[A, ak] - = - kak, 

M -  = a+a+ 
19- = a-a-. 

Using 

[A, atk]- = katk, 
k k 

[atk, ak] - afkak-akatk = n (ata-p+ 1)- n (ata+p) 
p =  1 p =  1 

the commutators of these and arbitrary higher-order operator products can be written 
down. From the definition of the angular momentum state vector 
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Englefield (1972) in his discussion of the 0(3,2) algebra associated with spherical 
harmonics A^& , A^> , A^L and A^,, A^+ , A  ̂- operators which are equal to R + , M +  , N +  and 
R-  , A-, R - ,  but he did not mention the relation to the two-dimensional oscillator in 
this connection. 

3. Relations to spherical harmonics 

The relation between orbital angular momentum and spherical harmonics is a standard 
topic of quantum mechanics textbooks, whereas the relation to R ,  , A, ,fi * is apparently 
not treated. . Infeld and Hull (1951) in Q 9 of their fundamental article on the factorization 
method gave all necessary equations, which only need to be translated into operator 
language. Only Infeld and Hull’s results will be used, the derivation will not be repeated. 
The important result is that for the differential operators changing j and m it is necessary 
to introduce a j-dependent normalization which does not show up for the conventional 
angular momentum. Louck (1960) worked out Infeld and Hull’s results for an n- 
dimensional harmonic oscillator and generalized angular momentum. By simply 
substituting equation (12) into the equations of Infeld and Hull, Q 9, we get 

COS e -, E,R+ + y ~ -  
sin e exp (icp) -, tjM+ - g,lci - 

The arrow indicates that the expressions in 8, cp are applied to Y,”(8, cp), whereas the 
combined operator expressions are applied to ljm). The operators E j ,  E?, E,, gf mean 
a multiplication with the factor given below, if they are applied together with the , , 
M*, 19, operators. They work to the right in the given order. Furthermore, they 
guarantee the commutation of the arguments in the spherical harmonics. The details 
of the introduction of additional j and m dependent operators are treated in detail by 
Infeld and Hull (1951). 

E j  = [(2j+ 1)(2j+ 3)]- 1/2 

Cf = [(2j- 1)(2j+ I)]-’/~ 

( j - m -  l)(j-m) 
(2j+ 1)(2j- l)(j+m)(j+m- 1) 

( j + m - l ) ( j + m )  
(2j+ 1)(2j- l)(j-m- l)(j-m) 

g* = 

For some examples it will be shown how the E j ,  E, operators work, It is 

(19) 
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As the right-hand side is treated in the subsequent equations (25) to (28), we can compare 
it to :  

( j + m +  l ) ( j - m +  l ) ( j + m + 2 ) ( j + m + 3 )  

( j + m ) ( j - m ) ( j - m -  1)(j-m-2) 

I j + 2 ,  m+ 1) 

(21) 
[ (2j+ 1)(2j+3)2(2j+5) 

tjMLtjfi+l jm)  = 

gjh-t!fi-l j m )  = I j -2 ,m+l)  i (2j+ 1)(2j- 1)2(2j- 3) 

4. Application to matrix elements 

By means of the transcriptions given in 4 3, spherical harmonics can be expressed in 
terms of fi, , h, , i?, operators, as they can be composed of cos%‘ sin ‘8 exp( k ilq) 
(where k,  1 are integers). These integrals, sometimes called Gaunt’s coefficients (Roten- 
berg et a1 1959) can be expressed by 3j-symbols : 

Using operator formulae, the results can be written down without using 3j-tables. 

Example 1 
112 

Y:  = -(g) sin 0 cos 8 exp(iq) 

Multiplication and insertion 

r: cc (tjR.tjA, - t j rZ+g jM-  + y r Z - e j M +  - t j*R-gjh- )  (25) 

leads to : 
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( j  + m + 2)( j + m + 1)( j + m + 2)( j - m) 
(2j + 1)’(2j + 3)’ =i 

( j - m - 1) ( j - m) ( j + m) ( j - m - 2) ‘I’ 

(2j- 1)(2j+ 1)(2j-3)(2j- 1) 1 ( j -2 ,m+ l(t:R-gjfi-(jm) = 

Formula (23) does not give such a simple result, as in every case a table of 3j-coefficients 
must be consulted, whereas in the equation above only a few elementary numerical 
calculations are necessary. A disadvantage of the method above is that the spherical 
harmonics to be expressed in operator form must be calculated or taken from a table. 

Example 2. 

It can be seen from a table of 3j-coefficients (Rotenberg er a1 1959) that accidentally 
some 3j-coefficients are zero, so that the matrix elements vanish. Since 

it follows that 

(3,21 Y:!3,2) = 0. 

This will be checked by the operator method. 

( j +  l + m ) ( j + l - m )  ( j + m ) ( j - m )  
(2j+ 1)(2j+3) (2j+ 1)(2j- 1) 

= 3(  + ) -1. 

Introducing j = 3, m = 2 leads to 

T i  = 3(&++)-1 = 0. (32) 

Some more complicated matrix elements will be discussed in the following section 
as they are closely related to general matrix elements of the two-dimensional oscillator. 

5. More complicated matrix elements 

5.1. Oscillator matrix elements and 3j-symbols 

From the discussion in the preceding section it is not surprising that certain harmonic 
oscillator matrix elements are proportional to 3j-symbols. As a proof could not be 
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found in the literature, a straightforward calculation will show this relation. As the 
two-dimensional oscillator is treated extensively in the literature (Louck and Shaffer 
1960, Messiah 1964), only some definitions of the angular momentum representation for 
the isotropic case will be given. The Hamiltonian is 

2 

B = [P:/2m+(mo2/2)83. 
i =  1 

To avoid unnecessary constants one introduces A i ,  Bi : 

From the a!, ai the angular momentum representation is generated by 

Energy and angular momentum are 

A = ho(A+ + A -  + 1) = ho(P+ 1)  

& = ( A +  - A - ) .  

(33) 

(37) 

(38) 

The eigenvectors are generated by repeated application of the creation operators . 
One often uses in different fields of physics different notations, but the representations 
are identical : 

Representation (i) is the polar representation of the isotropic oscillator. Representation 
(ii) is used in molecular spectroscopy for twofold degenerate vibrations and representa- 
tion (iii) is the angular momentum representation used in the text. After some algebra 
the Cartesian coordinates Ri  can be expressed in polar coordinates : 

2 ,  =  COS 4 = $at, +at_ +a+ + a - )  
2,  = r s i n 4  = $(at_-a:+a+-a-) 
A +  = r exp(i4) = at, + a -  
$- = rexp(-i+) = & + a + .  

The angle 4 is the polar angle of the two-dimensional oscillator, not to be confused with 
cp of the angular momentum representation. In Q 4 it was shown that matrix elements 
of spherical harmonics in the angular momentum representation are proportional to 
powers K*, A , ,  10,. Thus bilinear expressions must be formed from equations 
(42H45). 
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Example 3. 

The connection between an oscillator matrix element and 3j-symbols will be shown 
explicitly for r2 : 

3(2j+l)(2j+3))’l2 (j+l 1 j ) ( j + l  1 j )  

- m o m  0 0 0  
= C [ Yj*+mlYyYydCl = C 

Further matrix elements can be constructed by comparison with the results of 0 4. 
From the work of Schrodinger (1941) and later, independently, of Schwinger (quoted 
by McIntosh 1959) it is well known that by a suitable transformation the hydrogen 
radial wave equation can be transformed into the radial wave equation of the two- 
dimensional oscillator. This equivalence is treated in detail by Louck (1960) and by 
Englefield (1972). It is, therefore, possible to express the matrix element of example 3 
as a hydrogenic matrix element, which is also proportional to a 3j-symbol. In his 
group theoretical investigation of a selection rule for hydrogenic radial matrix elements 
Armstrong (1970) proved, that the Clebsch-Gordon coefficients of O(2,l) are pro- 
portional to those of the three-dimensional rotation group R(3). 

5.2. Matrix elements of hyperbolic angular momentum operator exponentials 

In 9 2 the real parts of R, R ,  and R, were defined and it was remarked that there is a 
formal analogy between spherical and hyperbolic angular momentum. In the theory of 
rotation the rotation matrices are of fundamental importance : 

(47) d i m ,  = ( jm( exp( - ie jJ  jm’ )  

which can be evaluated in the coupled-boson representation by simple commutations 
using the fact that a state vanishes if an annihilation operator is applied to the vacuum 
ket state (Grosswendt and Witschel 1972). It is interesting to see what analogous 
matrix elements with R, and R, look like. As the problem of calculating matrix elements 
of exponential operators with sums of bilinear expressions is similar to  the Gauss 
potential, operator commutations will be applied, which were used recently for the 
calculation of the two-centre overlap integral for different frequencies (Franck-Condon 
integral). This work (Witschel 1973) will be abbreviated by HOI (harmonic oscillator 
integrals). Only the method will be outlined and the essential steps and the results will 
be given, the intermediate algebra is omitted. We use the notation : 
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As these matrix elements can be reduced to exp[t l(iit2 f a2)] with arbitrary t and without 
specifying a t  and d further, the problem is the disentangling of this expression. One 
should expect that the Zassenhaus formula (see Wilcox 1967) should work: 

where C, is a complicated commutator expression. Insertion of the sums of bilinear 
operator expressions shows that the higher-order commutators neither vanish nor can 
be summed up. A different method is therefore applied, using an identity given by 
Sack (1958) and abbreviated by SI : 

exp[k(X + m?)] = exp exp kz = exp k x  exp 

for operators with 

[ X ,  PI- = y t  y c number. ( 54) 
Such shift operators can be constructed if two operators Â , l? have the commutator 

[ A , B ] -  = c X = AB p = B 2  [ X ,  $7- = 2 c f  (55) 

A = at -a ;  B = (a+ +a)  ; [A,B]- = -2 (56) 

exp[t,(AB+B2)] = exp[2 t , (~ t~+d tz ) ] ,  (57) 

For the calculation of exp[t ,(at2 - a')], A  ̂ and B are given by : 

SI is applied to the left-hand side 

exp[tl(at2-a2)] expi-21 -e4'1)(a'+ci)2] = exp[2t,(iitii+iit2)] exp(t,), ( 5 8 )  

exp[t,(Lit2 -a2)] = exp[2r,(dtd+iit2)] exp[+(l -e4'l)(ijt exp(tl). (59) 

exp[tl(iit2 -a2)] is isolated: 

The second term of the right-hand side is of the Gauss-type and can be disentangled 
by the HOI steps. The result for a constant t ,  , which will be determined by comparison, is : 

(60) 

t ,  = +ln{+[exp(4rl)+ 11). (61) 

exp[-$eZ'*- ~ ) ( a + + i i ) ~ ]  = exp[-t,(8t8+6+2)] exp[-t2(atii+ii2)] exp( -t,). 

Comparison of the coefficients of (at +a)' in the preceding equation leads to : 

Equation (60) is introduced into equation (59). The remaining exponential operators 
have the shift property and are disentangled by SI. The final result is : 

exp[tl(at2-dz)] = exp p exp[(at2/2)(ezZ- l)] e~p(2pa~a)exp[-(i2~/2)(1 (62) 
with 

U = 2tl-t ,  

p = t , - r , .  

For the two-dimensional oscillator the operators at and ii are written with superscripts 
1 and 2 in the Cartesian and + and - in the polar representation. The matrix elements 
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of the disentangled exponential are calculated by using the fact that 

(oola! = i1,loo) = o (63) 

and the operator formula 

For details and a normal-antinormal ordering formula for evaluating the resulting 
operator products see HOI. As the results are completely symmetrical in a+ and d -  , 
and in a i  and a ! ,  only t:;.[h+ -A?-, t l ]  will be given: 

t:m![h+ -fa-, t l ]  

= F:;, exp p(ool [d+ exp(2p)+at, exp( -2p) 

(65) 

Fi ; ,  = [ ( j  + m)!( j - m)!( j '  + m') ! ( j '  -")!I- 112. (66) 

2(a5a? -a+&)  = ay2-a:+at2-a:. (67) 

j' + m'dt j '  - "'loo) x(exp(2a)- l)]'+"a-j-m[dt, -a+(l-exp(-2t2))] - 

with 

For ti;[dt,aL - a + & - ,  2t1] we use the fact that 

By specifying 2t, appropriately, the matrix element t:k[K,, 191 is the formal analogue 
to ihe well known matrix elements of the rotation matrix dim,(19) : 

t:;[at+aL - a+a - ,2 t l ]  

= F:k exp(2/?)(001[a+ exp(2/3)]j+"[li- exp(2p)+@ exp( - 2p) 

x (exp(2a)- l)]j-m{d\ -a-[l -exp(-2t2)])j'+"at_j'-"100). 

[~(x,y) , .41-  a [ R + , . k k [ R - , S , I -  = 0 

(68) 

(69) 
the matrix element is diagonal in m. The calculation of the equivalent operator sums in 
the exponential follows the same lines. One defines 

As 

;? = &?-id 

B = t l t+ia 

leading, after twofold application of SI, to 

(71) t* - - 1 ln{f[exp(4it,)+ 13) 

and the disentangled expression 

exp[t1(dt2 +a2)] 
= exp p* exp{ -(i&t2/2)[exp(2a*)- 13) exp(2fi*&t&) 

x exp{ - (id2/2) [ 1 - exp( - 2t:)]) 

a* = 2it,-t: 

p* = itl-t,*. 

with 
(72) 

(73) 
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The matrix elements equivalent to those given above are 

t$m.[A+ + A - ,  t , ]  

= F$;, exp p*(ool{a+ exp(2p*)-idt, exp( -2b*)[exp(2a*)- 1])j+" 

x a - j -  "{at,  -id + [ 1 - exp( - 2tf)l)" + "dt_j'-"'100) (74) 

and 

t:;[afa: +&+a- ,  2t1] 

= Fi; exp(2j*)(001[11+ exp(2p*)]j+"(d- exp(2p*) - id\ exp( - 2p*) 

x [exp(2a*)- ~ ] ) j - ~ { a \  -ia-[l -e~p(-2t:)])"+~dt_"-"100). (75) 

Only one related matrix element could be found in the literature. Englefield (1972) 
discussed a scaling operator &), which scales a wavefunction 

$ ( Y ) l L ( X )  = Y 1 ' z + ( Y 4  (76) 

where y ' '2  guarantees unitarity. For the two-dimensional oscillator $7) is 

$(y)  = exp[ - (In y/2)(aI2 -a: +at, -a:)] 
= exp[(-lny)(a\at_ -a+&)] .  (77) 

The matrix element of $ ( y )  is identical with equation (68) if 2t, is appropriately chosen. 
Englefield gave his result in the polar representation in terms of the hypergeometric 
function zFl(a, p ;  y ;  z )  which for certain values of a, p reduces to a Jacobi polynomial. 
As dim,(0)  can also be written in terms of Jacobi polynomials the formal analogy between 
the 'Cartesian' and 'hyperbolic' rotation matrices is far reaching. 

6. Conclusion and discussion 

The results of this article can be summarized in three points. 
(i) For integerj, m Infeld and Hull's factorization method was used to relate bilinear 

operator expressions of the two-dimensional oscillator with the differential operators 
raising and lowering j and m of Yy(O, cp). Because of a different normalization, j- 
dependent operators must be used. 

(ii) Matrix elements of spherical harmonics can be written down without using 
3j-symbols. Because of the equivalence between the angular momentum representation, 
the two-dimensional oscillator and the hydrogen atom it could be shown that hydro- 
genic and oscillator radial matrix elements are proportional to 3j-symbols. 

(iii) For exponentials of sums and differences of the ten bilinear oscillator operators 
matrix elements could be evaluated, which are probably new. For a scaling operator 
the matrix element was already treated by group theory by Englefield. Here, an alterna- 
tive straightforward algebraic derivation could be given. 

The aim of the paper was to relate the algebraic approach of oscillator, hydrogen 
atom and angular momentum, which is, because of its simple algebra, also of pedagogical 
interest, to the well known analytical methods and the unifying group theoretical 
treatment. Compared to analytical methods it has the advantage that not only integer 
j and m, but also half integer j and m, can be treated. 
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